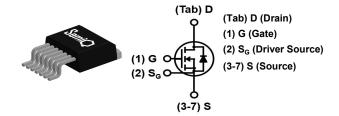


1200V SiC MOSFET

V _{DS}	1200 V
R _{DS,on}	38 mΩ
I _{D (TC=25C)}	66 A
T _j ,max	175°C

Features

- High speed switching
- Reliable body diode
- All parts tested to greater than 1,400V
- Avalanche tested to 400mJ*
- · Driver source pin for gate driving


Benefits

- Lower capacitance
- Higher system efficiency
- Easy to parallel
- Lower Switching Loss
- · Longer clearance distance

Applications

- Solar Inverters
- Switch mode power supplies, UPS
- · Induction heating and welding
- EV charging stations
- High voltage DC/DC converters
- · Motor drives

Package

Part #	Package	Marking
GP2T040A120J	TO-263-7L	2T040A120J

Maximum Ratings, at T_i=25°C, unless otherwise specified

Characteristics	Symbol	Conditions	Values	Unit	
Drain-Source Voltage	V _{rated}	V _{GS} =0V, I _{DS} =1µA	1200	V	
Continuous Drain Current	1	T _C =25 °C, T _j =175 °C	66		
Continuous Drain Current	I _D	T _C =100 °C, T _j =175 °C	49	Α	
Pulsed Drain Current	I _{D,pulse} *	T _C =25°C	160		
Cata Sauraa Valtaga	V_{GSmax}		-10/25	V	
Gate Source Voltage	V_{GSop}	Recommended operational	-5/20	\ \	
Power Dissipation	P _{tot}	T _C =25°C	357	W	
Operating & Storage Temperature	T _{j,} T _{storage}	Continuous	-55175	°C	
Single Pulse Avalanche Energy	E _{AS}	L=1.0mH, I _{AS} =28.3A, V=50V	400	mJ	

Thermal Characteristics

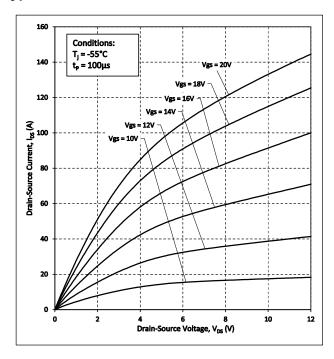
Characteristics	Symbol	Conditions	Values			Unit
Cildiacteristics		Conditions	min.	typ.	max.	Oilit
Thermal Resistance, Junction to Case	R _{thJC}		-	0.33	0.42	
Thermal Resistance, Junction to Ambient	R _{thJA}		-	-	40.0	°C/W

^{*} Pulse width is limited by Tj_{max}

GP2T040A120J

Static Electrical Characteristics, at T_j =25°C, unless otherwise specified

Characteristics	Symbol Conditions		Values			Unit
Cital acteristics	Syllibol	Conditions	min.	typ.	max.	Offic
Drain-Source Breakdown Voltage	BV _{DSS}	I _{DS} =1mA	1200	-	-	V
Zero Gate Voltage Drain Current	1	V _{DS} =1200V, V _{GS} =0V	-	0.1	1.0	μА
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =1200V, V _{GS} =0V, T _j =175°C	-	1	-	
Gate-Source Leakage Current	I _{GSS+}	V _{GS} =20V, V _{DS} =0V	-	<+10	100	nA
Gate-Source Leakage Current	I _{GSS-}	V_{GS} =-5V, V_{DS} =0V	-	>-10	-100] "^
	V _{GS(th)}	V _{GS} =V _{DS} , I _{DS} =10mA	1.8	2.4	4	V
Gate Threshold Voltage		$V_{GS}=V_{DS}$, $I_{DS}=10$ mA, $T_j=125$ °C	-	1.8	-	
		$V_{GS}=V_{DS}$, $I_{DS}=10$ mA, $T_j=175$ °C	-	1.6	-	
Drain-Source On-Resistance		V _{GS} =20V, I _{DS} =40A	-	38	52	
	R _{DSon}	V _{GS} =20V, I _{DS} =20A	-	35	45	mΩ
		V _{GS} =20V, I _{DS} =40A, T _j =125°C	-	56	-	
		V _{GS} =20V, I _{DS} =40A, T _j =175°C	-	73	-]
Transconductance	g _{fs}	V _{DS} =20V, I _{DS} =40A	-	16	-	S
Gate Input Resistance	R_G	f=1MHz, V _{AC} =25mV, D-S Short	-	1.9	-	Ω


AC Electrical Characteristics, at T_j =25°C, unless otherwise specified

Characteristics	Cumbal	/mbol Conditions		Values		
Onaracteristics	Symbol	Conditions	min.	typ.	max.	Unit
Input Capacitance	C _{ISS}	\\ _0\\	-	3192	-	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =1000V,	-	132	-	pF
Reverse Transfer Capacitance	C _{RSS}	f=200kHz, V _{AC} =25mV	-	7	-	
Coss Stored Energy	E _{oss}	7 200KHZ, V _{AC} 20HV	-	77	-	μJ
Turn-On Switching Energy	E _{ON}	V_{DD} =800V, I_{DS} =40A, $R_{G(ext)}$ =4.3, V_{GS} =-5/+20V, L=273 μ H,	-	515	-	
Turn-Off Switching Energy	E _{OFF}		-	89	-	μJ
Total Switching Energy	E _{TOT}	FWD=GP2T040A120J	-	604	-	
Turn-On Delay Time	t _{D(on)}	V_{DD} =800V, I_{DS} =40A, $R_{G(ext)}$ =4.3, V_{GS} =-5/+20V, L =273 μ H, FWD = $GP2T040A120J$	-	14	-	
Rise Time	t _R		-	5	-	
Turn-Off Delay Time	t _{D(off)}		-	28	-	ns
Fall Time	t _F		-	12	-	
Total Gate Charge	Q_{G}	\/ -800\/ I -20A	-	112	-	
Gate to Source Charge	Q _{GS}	V _{DD} =800V, I _{DS} =20A, V _{GS} =-5/+20V	-	40	-	nC
Gate to Drain Charge	Q_{GD}	V GS0/ 120 V	-	20	-	

Body Diode Characteristics, at Tj=25°C, unless otherwise specified

Characteristics	Symbol	Conditions	Values			Unit
Citatacteristics	Syllibol	Conditions	min.	typ.	max.	
Max Continuous Diode Fwd Current	Is	V _{GS} =-5V, T _C =25°C	-	-	74	Α
Diode Forward Voltage	V _{SD}	V _{GS} =-5V, I _{SD} =20A	-	3.8	-	V
Reverse Recovery Time	t _{RR}	L =404 \/ =800\/ \/ = 5\/	-	10	-	ns
Reverse Recovery Charge	Q _{RR}	I_{SD} =40A, V_{R} =800V, V_{GS} =-5V, di_{F}/dt =9.6A/ns	-	394	-	nC
Peak Reverse Recovery Current	I _{RRM}		-	67	-	Α

Typical Performance

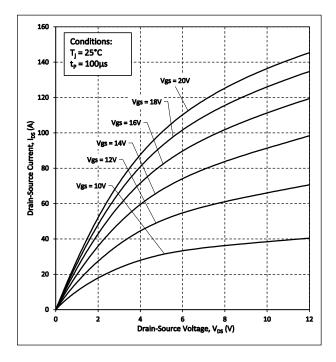
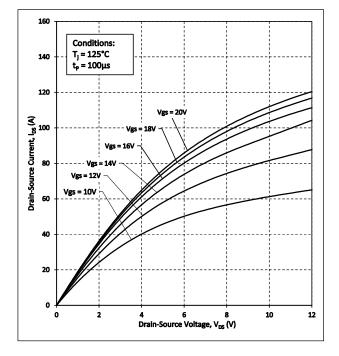



Figure 1. Output Characteristics T_i = -55°C

Figure 2. Output Characteristics $T_i = 25^{\circ}C$

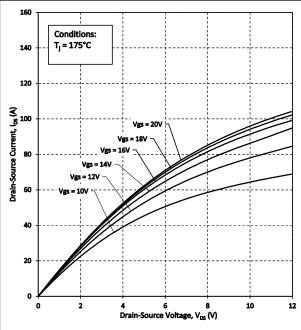


Figure 4. Output Characteristics T_i = 175°C

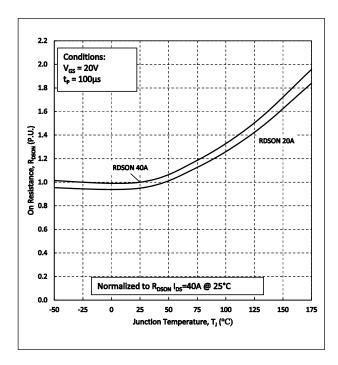


Figure 5. Normalized On-Resistance vs. Temperature

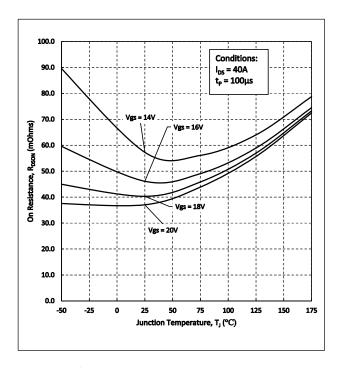


Figure 7. On-Resistance vs. Temperature For Various Gate Voltages

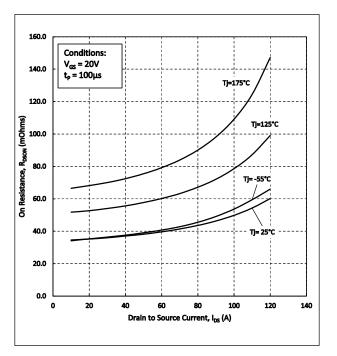


Figure 6. On-Resistance vs. Drain Current For Various Temperature

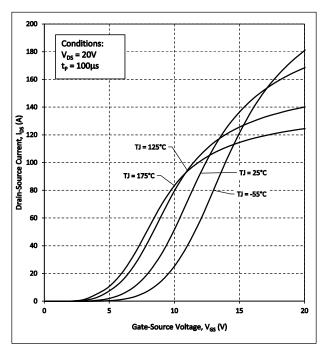
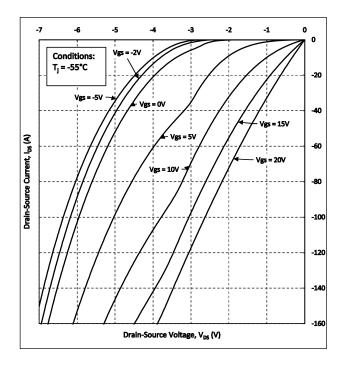



Figure 8. Transfer Characteristic for Various Junction Temperatures

-7 -6 -5 -4 -3 -2 -1 0 0

Vgs = -5V

Vgs = 10V

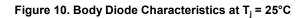
Vgs = 15V

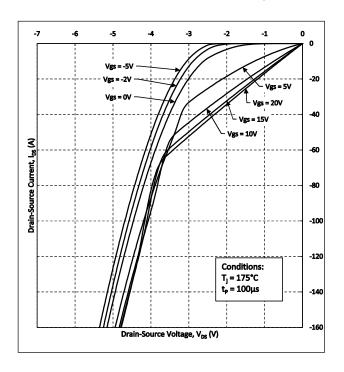
Vgs = 20V

-60

-80

Conditions:


T_j = 25°C


t_p = 100µs

-140

Drain-Source Voltage, V_{Ds} (V)

Figure 9. Body Diode Characteristics at T_i = -55°C

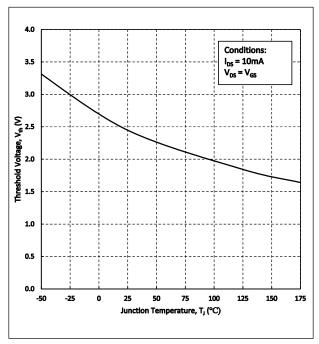
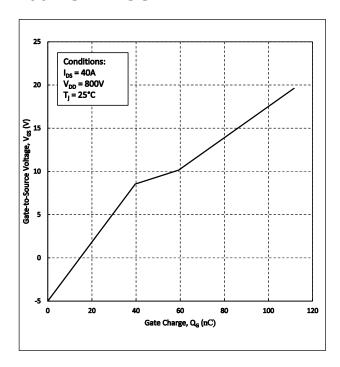



Figure 12. Threshold Voltage vs. Temperature

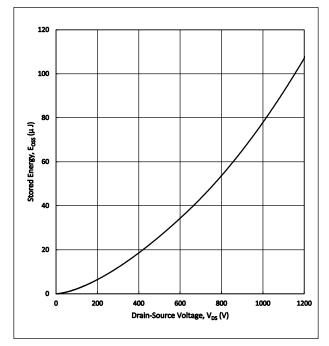
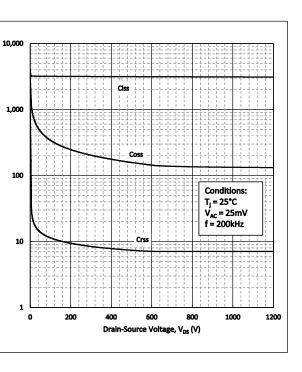



Figure 13. Gate Charge Characteristics

Capacitance (pF)

Figure 15. Capacitance vs Drain-Source Voltage

Figure 14. Output Capacitor Stored Energy

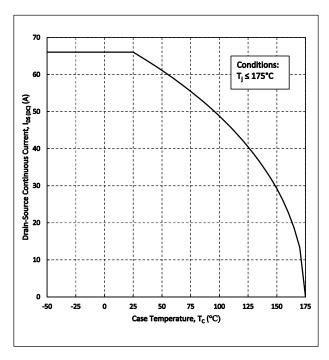


Figure 16. Continuous Drain Current Derating vs.

Case Temperature

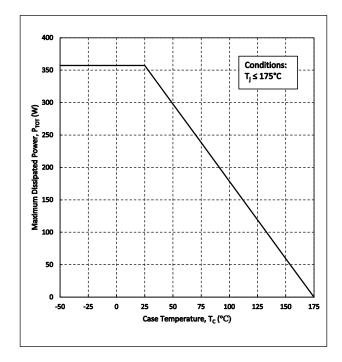


Figure 17. Maximum Power Dissipation Derating vs Case Temperature

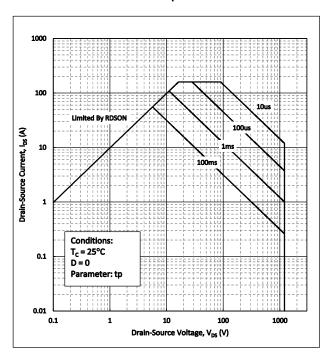


Figure 19. Safe Operating Area

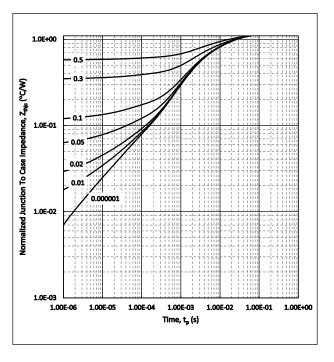


Figure 18. Transient Thermal impedance (Junction to Case)

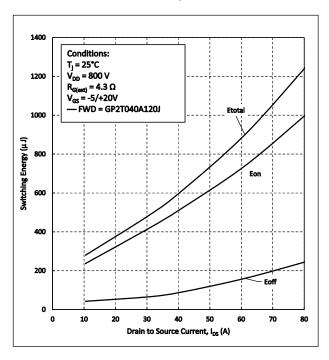


Figure 20. Clamped Inductive Switching Energy vs.

Drain Current

1200V SiC MOSFET

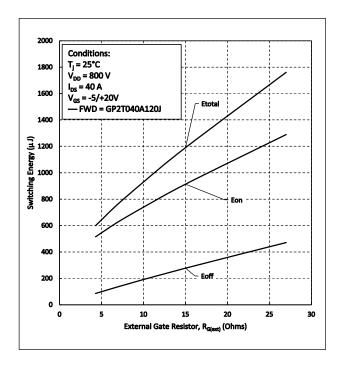


Figure 21. Clamped Inductive Switching Energy vs. $R_{\text{G(ext)}} \label{eq:RG(ext)}$

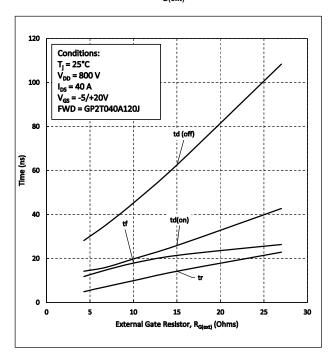


Figure 23. Switching Times vs R_{G(ext)}

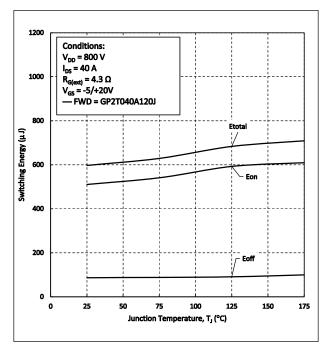


Figure 22. Clamped Inductive Switching Energy vs.
Temperature

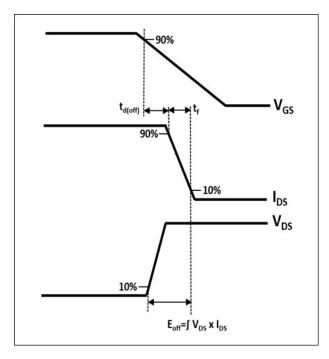
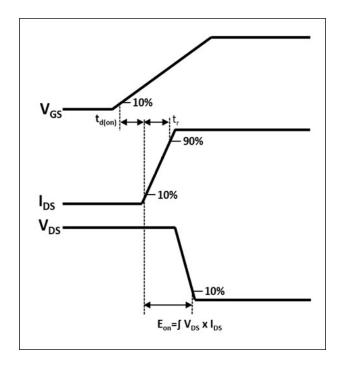



Figure 24. Turn-off Transient Definitions

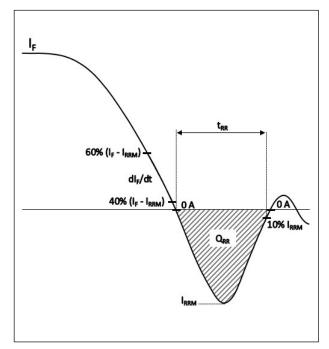


Figure 25. Turn-on Transient Definitions

Figure 26. Reverse Recovery Definitions

Min

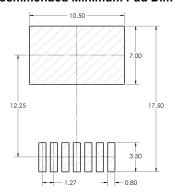
Sym

Millimeters

Max

Inches

Max


Min

Package Dimensions TO-263-7L

4.30 4.57 0.169 0.180 Α Α1 0.00 0.25 0.000 0.010 0.50 0.70 0.020 0.028 0.33 0.65 0.013 0.026 С 0.046 1.17 1.40 0.055 C2 9.03 9.13 0.355 0.359 D 4.66 4.81 0.183 0.189 D1 4.255 BSC 0.168 BSC D2 7.170 BSC 0.282 BSC D3 10.13 10.23 0.399 | 0.403 Ε 6.50 8.60 0.256 0.339 E1 6.78 7.67 0.267 0.302 E2 1.22 1.32 0.048 0.052 е 15.04 17.12 0.592 0.674 Н 0.254 BSC 0.010 BSC L3

Recommended Minimum Pad Dimensions

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.SemiQ.com.

REACh Compliance

REACh substances of high concern (SVHC) information is available for this product. Since the European Chemicals Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at SemiQ Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

SemiQ Inc., reserves the right to make changes to the product specifications and data in this document without notice. SemiQ products are sold pursuant to SemiQ's terms and conditions of sale in place at the time of order acknowledgement.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.

SemiQ makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SemiQ assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using SemiQ products.

To obtain additional technical information or to place an order for this product, please contact us. The information in this datasheet is provided by SemiQ. SemiQ reserves the right to make changes, corrections, modifications, and improvements of datasheet without notice.